Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1.
نویسندگان
چکیده
Morphogens are thought to establish pattern in early embryos by specifying several cell fates along a gradient of concentration; a well-studied example is the Drosophila protein decapentaplegic (DPP) acting in the wing disc. Recent work has established that bone morphogenetic protein 4 (BMP4), the vertebrate homologue of DPP, controls the fundamental choice between neural and epidermal fates in the vertebrate ectoderm, under the control of antagonists secreted by the organizer region of the mesoderm. We now show that BMP4 can act as a morphogen, evoking distinct responses in Xenopus ectodermal cells at high and low concentrations, in a pattern consistent with the positions of the corresponding cell types in the embryo. Moreover, this complex cellular response to extracellular BMP4 concentration does not require subsequent cell-cell communication and is thus direct, as required of a classical morphogen. We also show that the same series of cell types--epidermis, cement gland and neural tissue--can be produced by progressively inhibiting endogenous BMP signaling with specific antagonists, including the organizer factor noggin. Finally, expression of increasing doses of the signal transduction molecule Smad1 accurately reproduces the response to BMP4 protein. Since Smads have been shown to act in the nucleus, this finding implies a direct translation of extracellular morphogen concentration into transcription factor activity. We propose that a graded distribution of BMP activity controls the specification of several cell types in the gastrula ectoderm and that this extracellular gradient acts by establishing an intracellular and then nuclear gradient of Smad activity.
منابع مشابه
Smurf1 regulates neural patterning and folding in Xenopus embryos by antagonizing the BMP/Smad1 pathway.
The ubiquitin ligase Smurf1 can target a handful of signaling proteins for ubiquitin-mediated proteasomal destruction or functional modification, including TGF-beta receptors, Smads, transcription factors, RhoA and MEKK2. Smurf1 was initially implicated in BMP pathway regulation in embryonic development, but its potential role in vertebrate embryogenesis has yet to be clarified. Here we demonst...
متن کاملTsukushi controls ectodermal patterning and neural crest specification in Xenopus by direct regulation of BMP4 and X-delta-1 activity.
In Xenopus, ectodermal patterning depends on a mediolateral gradient of BMP signaling, higher in the epidermis and lower in the neuroectoderm. Neural crest cells are specified at the border between the neural plate and the epidermis, at intermediate levels of BMP signaling. We recently described a novel secreted protein, Tsukushi (TSK), which works as a BMP antagonist during chick gastrulation....
متن کاملIntegrating positional information at the level of Smad1/5/8.
The intensity of the BMP signal is determined by cell surface receptors that phosphorylate Smad1/5/8 at the C-terminus. In addition to this BMP-activated phosphorylation, recent studies have shown that sequential phosphorylations by MAPK and GSK3 kinases can negatively regulate the activity of the pSmad1Cter signal. These phosphorylations in the linker region cause Smad1 to be transported to th...
متن کاملVentral and lateral regions of the zebrafish gastrula, including the neural crest progenitors, are established by a bmp2b/swirl pathway of genes.
A bone morphogenetic protein (BMP) signaling pathway is implicated in dorsoventral patterning in Xenopus. Here we show that three genes in the zebrafish, swirl, snailhouse, and somitabun, function as critical components within a BMP pathway to pattern ventral regions of the embryo. The dorsalized mutant phenotypes of these genes can be rescued by overexpression of bmp4, bmp2b, an activated BMP ...
متن کاملDorsal-ventral patterning and neural induction in Xenopus embryos.
We review the current status of research in dorsal-ventral (D-V) patterning in vertebrates. Emphasis is placed on recent work on Xenopus, which provides a paradigm for vertebrate development based on a rich heritage of experimental embryology. D-V patterning starts much earlier than previously thought, under the influence of a dorsal nuclear -Catenin signal. At mid-blastula two signaling center...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 124 16 شماره
صفحات -
تاریخ انتشار 1997